最新消息:雨落星辰是一个专注网站SEO优化、网站SEO诊断、搜索引擎研究、网络营销推广、网站策划运营及站长类的自媒体原创博客

哪对函数满足f(N)〜g(N)?

SEO心得admin29浏览0评论
本文介绍了哪对函数满足f(N)〜g(N)?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述

我刚刚开始使用算法,并且正在执行类似此问题的某些任务:

I've just started working with algorithms and I am doing some tasks like this question:

我认为正确的答案是A.由于功能相同,还是我错过了一些事情?

I think, the right answer is A. As the functions are the same, or do I miss something?

问题:

推荐答案

答案是A.请注意,在这种情况下,

The answer is A. Notice that in that case,

f(N)= N + 2N + 3N = 6N = g(N)

f(N) = N + 2N + 3N = 6N = g(N)

所以f(N)〜g(N).

so f(N) ~ g(N).

对于B中给出的功能,请注意

For the functions given in B, notice that

f(N)=(N +1)+(N + 2)+(N + 3)= 3N + 6

f(N) = (N + 1) + (N + 2) + (N + 3) = 3N + 6

所以当N趋于无穷大时,f(N)/g(N)的极限为3,因此f(N)不等于g(N)的波浪线.

so the limit of f(N) / g(N) as N tends toward infinity is 3, and therefore f(N) is not tilde of g(N).

对于C中的功能,请注意

For the functions in C, notice that

f(N)/g(N)= 1/N 5 +1/N 4 +1/N 3

f(N) / g(N) = 1 / N5 + 1 / N4 + 1 / N3

而且,在极限情况下,这不会趋向于一个.

and, in the limit, this does not tend to one.

对于D中的功能,请注意

For the functions in D, notice that

f(N)=对数N +对数2N +对数3N =对数6N 3 = 3对数6N

f(N) = log N + log 2N + log 3N = log 6N3 = 3 log 6N

因此,当N趋于无穷大时,f(N)在g(N)上的极限为3,因此这些函数不会互相代名词.

so the limit of f(N) over g(N) as N tends toward infinity is 3, so the functions aren't tilde of one another.

发布评论

评论列表(0)

  1. 暂无评论